NAME /	EY	PER	DATE		
	TURE PRACTICE		<i>D</i> ATL		
a) the atom has a mb) electrons exist in	contributions to atom nassive positively changed regions of space can specific energy leves sent in the nucleus.	narged nucleu alled orbitals	s.	•	
a) the atom has a molectrons exist in	inger's contribution nassive positively change in regions of space can specific energy levent in the nucleus.	narged nucleu alled orbitals	ıs.	ea that	
a) he atom has a m	ord's contributions to nassive positively changed regions of space can nappecific energy leversent in the nucleus.	arged nucleu alled orbitals	ıs.	that	
gas when a) electrons in the g b) electrons in the g c) protons in the ga	is electrically charg gas sample are excit gas sample return to as sample are excited as sample return to t	ed into new e their ground d into new en	energy levels. state energy ergy levels.		I from the
5. Light which has a) high, high	a long wavelength b) low, high	has c) high	_energy and a	frequency fow, low	y.
6. Light which has a) high, high	a short wavelength b) low, high	hasc) high	_energy and	a frequenc d) low, low	y.
7. T or F. Modern planets orbit the su		nes that elect	rons orbit the	nucleus of an atom n	nuch like
 Orbitals are regi proton 	ons of space where b) electron	a/anc) neut	ron	is likely to be l d) nucleus	ocated.
9. The atomic mass a) carbon-12	s unit (amu) is based a) carbon-13			 a) hydrogen	
10. What is the ma a) 1 b)2	ximum number of 6 c) 6	electrons that d) 10	can fit into a e) 14		
11. What is the ma a) 1 b) 2	eximum number of 6	electrons that d) 10	can fit into a (e)14	f sublevel ? f) 18	
12. Which of the form a) 1s b) 3	ollowing is an inval d c) 2p	id orbital des d) 4f	ignation?		

Matching: a) Hund's Rule	b) Aufbau Principle	c) Pauli Exclusion Principle
	filling begins with lowest en	ergy orbitals first.
orbital, and then doub	ling up.	rgy by adding one electron to each ectrons, each with opposite spins.
Fill in the blank: 16. An atom is the smallest of	uni+ of an that element.	n element which retains the
17. Fill the orbital diagram fo	r Arsenic (As)	
5p	4d	
4p 1 1 1 1 4s 1	3d 11 11 11	11 11
3p 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2p 1/ 1/ 1/		
1s 1 /		

18. Arrange the following sublevels in order of increasing energy.

4d, 4f, 5s, 5p, 5d, 5f, 6s, 6p, 6d, 7s, 7p

55,4d"5p634f"5d'6p735f"6d107p6

19. Write the full electron configuration for Cl. $17e^{-5}$ 15^{2} $15^$

20. Write the full electron configuration for Ba. 56e

1522522p63523p64523d104p65524d105p6652

21. Write the shorthand electron configuration (noble gas configuration) of Co. 27e

[Ar] 4523d7

22. Write the shorthand electron configuration (noble gas configuration) of Pb. 72e

[Xe] 6524f145d106p2

23. Write the outer electron configuration (battleship notation) for Hg (only the last sublevel).

5d10

24. Write the outer electron configuration (battleship notation) for Sb (only the last sublevel).

5p3

25. Use the following data to calculate the average atomic mass of chromium.

ISOTOPES	MASS (amu)	Percent Abundance		
Cr-50	49.946	4.35		
Cr-52	51.941	83.8		
Cr-53	52.941	9.5		
Cr-54	53.939	2.35		

SHOW YOUR WORK AND CIRCLE FINAL ANSWER.

[49.946·4.35] + (51.941·83.8) + (52.941·9.5) + (53.939·2.35)

Atomic Structure Chart

No.	Element	Symbol	Protons	Neutrons	Electrons	Mass	Charge
1	FLUORTNE	F	9	10	10	19	-1
2	Carbon	(6	8	2	14	+4
3	ALUMINUM	Al	13	14	10	27	+3
4	XENON	Xe	54	77	54	131	0
5	PHOSPHORUS	P	15	16	18	31	-3
6	Sulfur	5	16	16	18	32	-2
7	POTASSZUM	K	19	20	18	39	+1
8	LODINE	I	53	. 74	54	127	-1
9	ARGON	Ar	18	22	18	40	0
10	LEAD	Pb	82	125	78	207	+4
11	Inon	Fe	26	30	24	56	+2
12	SILICON	SI	14	14	10	28	+4
13	CALCEUM	Ca	20	20	18	40	+2
14	MAGNESEUM	Mg	12	12	10	24	+2
15	CHLORINE	Cl	17	18	18	35	-1
16	TITAVIUM	Ti	22	25	20	47	+2
17	MERCURY	Hg	80	120	78	200	+2
18	TUNGSTEN	, W	74	110	70	184	+4
19		Sn	50	69	46	119	44
20	TIN SILVER	Ag	47	61	47	108	0